Newton-módszer

gyökkereső algoritmus
Ez a közzétett változat, ellenőrizve: 2024. július 14.

A numerikus analízisben a Newton-módszer (más néven Newton–Raphson-módszer, Newton–Fourier-módszer vagy érintőmódszer) az egyik legjobb módszer, amellyel valós függvények esetén megközelíthetjük a gyököket (zérushelyeket). A Newton-módszer gyakran nagyon gyorsan konvergál, de csak akkor, ha az iteráció a kívánt gyökhöz elég közelről indul. Ez a közelség és a konvergenciasebesség a függvénytől függ. A Newton-módszer minden figyelmeztetés nélkül nagyon könnyen félrevezethet egy tapasztalatlan használót, ha túl távolról próbálkozik indítani a módszert. A legjobb megoldás tehát az, hogy egy másik eljárással vizsgáljuk a konvergenciát, ami felismeri és lehetőleg kiküszöböli a lehetséges konvergenciahibákat.

Nemcsak gyököt tudunk keresni ezen a módon, hanem minimumot vagy maximumot is találhatunk, feltéve, hogy a függvény differenciálható; ugyanis a függvénynek ott lehet szélsőértéke, ahol deriváltjának gyöke van. Az algoritmus az első a Householder-algoritmusok osztályában, de ezeket meghaladja a Halley-módszer.

A módszer leírása

szerkesztés

A módszer ötlete a következő: kiindulunk egy pontból, amely az igazi gyökhöz elég közel található. A függvényérték ebben a pontban megközelítőleg az ehhez a ponthoz húzott érintőn található (amelyet meghatározhatunk egyszerű számításokkal), majd kiszámoljuk ennek az érintőnek az x tengellyel való metszéspontját (melyet egyszerűen megtehetünk algebrai ismereteinket felhasználva). Ez az OX tengellyel való metszéspont valószínűleg egy jobb közelítése a függvény gyökének, mint az eredeti pontunk, a módszer iterálható.

 
A Newton-módszer illusztrációja. Az f függvény grafikonja kékkel és az érintője pirossal). Látjuk, hogy   jobb közelítése az   függvény   gyökének, mint  

Feltételezzük, hogy f : [a, b] →   differenciálható függvény, amely leképezi az [a, b] zárt intervallumot a valós számok   halmazába. Könnyen kifejezhető a képlet, ami szerint a gyök felé konvergálunk. Tegyük fel, hogy ismerjük a xn közelítést. Tovább módosíthatjuk az összefüggést egy még jobb xn+1 közelítés irányába, figyelembe véve a bal oldali diagramot. Tudjuk a derivált definíciójából, hogy egy bizonyos pontban a ponthoz húzott érintővel azonos. Vagyis:

 .

Ahol f ' az f függvény deriváltját jelenti. Innen egy kis algebrai átalakítás után a végső alak:

 .

A folyamatot az x0 pontból indítjuk (Minél közelebb van a gyökhöz, annál jobb. De mivel nem ismerjük a gyök pozícióját, találgatással és ellenőrzéssel leszűkíthetjük az intervallumot kisebb intervallumokra a felezőpont meghatározásának módszerét felhasználva). A módszer általában konvergál, ha a megadott érték elég közel található az ismeretlen helyzetű gyökhöz, és  . Továbbá ahhoz, hogy a gyök legalább egyszeres gyök legyen, szükséges, hogy a konvergenciája kvadratikus legyen a gyök szomszédságában, amely azt jelenti, hogy a szám megközelítőleg megduplázódik minden lépésben. Több részlet az analízis részben található.

Algoritmus

szerkesztés

Az alábbi kód Python programozási nyelvben van írva, az epszilon paraméter pedig a kívánt pontosságot jelenti. Például ha az   függvény gyökét keressük:

import math
def Fx(X):
	return X-e**X
def Erinto(Fx, dFx, x0, epszilon):
	x1=x0-Fx(x0)/dFx(x0)
	while abs(x1-x0)>epszilon:
		x0=x1
		x1=x0-Fx(x0)/dFx(x0)
	return x1
print Erinto(Fx, dFx, 0.5, 0.0001)

Adott a cos(x) = x3 függvény, ahol x pozitív szám. Ebből kiindulva a feladat a következő: keressük az f(x) = cos(x) − x3 függvény gyökét. Annak tudatában, hogy f '(x) = −sin(x) − 3x2, és cos(x) ≤ 1, illetve x3 > 1 minden x-re (ha x>1), azt is tudjuk, hogy a gyök valahol 0 és 1 között található. Ezért egy x0 = 0,5 kezdeti értékkel próbálkozunk:

 

A helyes számjegyek alá vannak húzva a fenti példában. Kivételesen x6 egyezik a legjobban a megadott decimális helyekhez viszonyítva. Láthatjuk a helyes számjegyű számot, miután a tizedesvessző 2-ről (x3-re), 5-re és 10-re növekszik, illusztrálva a kvadratikus konvergenciát.

Egy szám négyzetgyöke

szerkesztés

Egy szám négyzetgyökét számos módon megkereshetjük, a Newton-módszer többek között erre is remekül használható.

Például, ha a 612 négyzetgyökére vagyunk kíváncsiak, akkor az alábbi módon járhatunk el.

 

Írjuk fel függvényként a felső kifejezést!

 

ezt deriválva a következőt kapjuk,

 

Kezdeti becslésünk a 10, a folytatás Newton-módszerrel megadva,

 

A helyes számjegyek alá vannak húzva. Csupán pár iterációval bárki elnyerheti a megfelelő számú tizedes jegyet.

Történelmi háttér

szerkesztés

A Newton-módszert először Isaac Newton írta le a De analysi per aequationes numero terminorum infinitas-ban (amelyet 1669-ben írt és 1711-ben William Jones adott ki) és a De metodis fluxionum et serierum infinitarum-ban (amelyet 1671-ben írt, fordította és kiadta Method of Fluxions címmel John Colson 1763-ban). Ez a leírás nagymértékben különbözik a fentiekben megadott modern leírástól, meghatározástól. Newton csak polinomok esetében használta a módszert. Ő nem számolta ki a  - rákövetkező közelítést, hanem kiszámolt egy polinomsorozatot, és majd csak a végen ért el az x gyök közelítéséhez. Végül Newton a módszert kizárólag algebrainak tekintette, és nem vette észre a kapcsolatot a számításokkal. Valószínűleg François Viète egyik nem annyira pontos, de hasonló módszeréből vezette le. Viète módszerének lényege megtalálható a perzsa matematikus Sharaf al-Din al-Tusi (Ypma 1995) munkái közt. Egy speciális esete a Newton-módszernek, amikor négyzetgyököket számolunk, sokkal korábban előfordult, és úgy nevezték, hogy babilóniai módszer.

A Newton-módszer először 1685-ben John Wallis A Treatise of Algebra both Historical and Practical című művében jelent meg, majd 1690-ben Joseph Raphson kiadott egy sokkal egyszerűbb leírást Analysis aequationum universalis címmel. Raphson is algebrai módszerként tekintette a Newton által kidolgozott módszert, és kizárólag polinomokkal dolgozott, de egymás után következő közelítések formájában írta le, nem mint Newton, aki sokkal komplikáltabb polinomsorozatként. Végül 1740-ben Thomas Simpson a Newton-módszert iteratív módszernek tekintette, amely általános nemlineáris egyenletek megoldására szolgál, fluxusféle számítások segítségével, lényegében megadva a fentiekben elhangzott leírást. Ugyanazon publikáción belül Simpson megadta a két egyenletből álló egyenletrendszerek általánosítását, és megjegyezte, hogy a Newton-módszer optimalizációs problémák megoldására is felhasználható úgy, hogy a fokszámot nullára állítjuk. 1879-ben Arthur Cayley először határozta meg a The Newton-Fourier imaginary problem című művében a Newton-módszer általánosításával járó nehézségeket olyan komplex polinomok gyökei esetén, amelyeknek a foka meghaladta a 2-t, és a kezdeti érték is komplex volt. Ez megnyitotta a racionális függvények iterációelmélete felé vezető utat.

Gyakorlati meggondolások

szerkesztés

Általában a konvergencia kvadratikus: a hiba négyzetesen csökken minden lépésnél, tehát a helyes jegyek száma megduplázódik minden lépésnél. De van egy pár hátránya. Először, a Newton-módszerhez szükséges direkt kiszámolni a deriváltat. Ha a deriváltat megközelítjük a függvény két pontján áthaladó ferde egyenessel, akkor ebből következik a húrmódszer, mellyel sokkal hatékonyabb eredményekre juthatunk, figyelembe véve a számításokhoz szükséges erőfeszítéseket. Másodszor, ha a gyök túl távol van a kezdeti értéktől, a Newton-módszer nem konvergálhat. Ebből az okból kifolyólag a legtöbb gyakorlati alkalmazásnál meghatározzák az iterációk számának a maximumát, és esetleg az iterációs méretet is. Harmadszor, ha a keresett gyök multiplicitása egynél nagyobb, akkor a konvergencia csupán lineáris (a hiba egy konstanssal csökken minden lépés során), hacsak nem teszünk speciális lépéseket. Mivel a fentiekben említett hibákban a legkomolyabb probléma a konvergencia hiánya, W. H. Press és mások (1992-ben) bemutattak egy olyan verziót, amelyben a folyamat annak az intervallumnak a közepéről indul, amelyben feltételezzük a gyököt, és az iteráció akkor áll le, ha az olyan értéket generál, amely az intervallumon kívül esik. Széles körű számítógéprendszer-fejlesztők a húrmódszert kedvezőbbnek tartják a Newton‑módszerrel szemben, mert elég differenciahányadost használni a deriválttal szemben. Ezt folyamatosan frissíteni kell, ami nem a legelőnyösebb. A gyakorlatban a kisebb kód fenntartása sokkal előnyösebb, mint a másodrendű konvergencia.

 
Az a x³ – 2x + 2 függvény érintőegyenesei a 0 és 1 pontokban, amelyek az x tengelyt 1 illetve 0 pontokban metszik, illetve illusztrálja, hogy miért is oszcillál a Newton-módszer ezek a értékek közt bizonyos kezdeti értékek esetén

Távoli kezdőpont

szerkesztés

Ha a kezdeti pont nincs elég közel a gyökhöz, a konvergencia elmaradhat. Vegyük a következő függvényt:

 

és a 0 kezdeti pontot. Az első iteráció után 1-et kapunk, majd a második visszatér a 0-ba, tehát a folyamat oszcillálni fog a két érték közt anélkül, hogy elérné a gyököt. Általában a folyamat viselkedése igen bonyolult lehet.

Ha a derivált nem folytonos

szerkesztés

Ha a derivált nem folytonos a gyöknél, akkor a konvergencia nem fog megnyilvánulni, bármilyen intervallumot is veszünk a gyök számára.

Tekintsük a következő függvényt:

 

  és  

Bármely intervallumot is veszünk a gyök számára, ez a derivált változtatni fogja az előjelét, mihelyt x megközelíti a 0-t jobbról, illetve balról, míg   ,ha  .

Tehát   végtelen a gyök közelében, mely azt eredményezi, hogy a Newton-módszer nem fog konvergálni, akkor se, ha a függvény mindenhol deriválható; a derivált nem zéró a gyökben;   végtelenszer differenciálható, kivéve a gyökben; és a derivált végtelen a gyök közelében.

Második derivált hiánya

szerkesztés

Ha nem létezik a gyöknél a második derivált, akkor a konvergencia lehet, hogy nem lesz kvadratikus. Vegyük a:

  függvényt,

és a függvény deriváltja:

 

és a második deriváltja:

 

kivéve mikor   ahol végtelen. Tudván  ,

 

amely megközelítőleg 4/3, másodszor több pontossági bitje van, mint  -nek. Ez 2-szer több, mint amennyi szükséges lenne egy kvadratikus konvergenciához. Tehát ebben az esetben a Newton-módszer konvergenciája nem kvadratikus, habár a függvény mindenhol folytonosan differenciálható; a derivált nem nulla a gyökben; és   határozatlanul differenciálható, kivéve a gyökben.

A derivált nulla

szerkesztés

Ha a függvény deriváltja nulla a gyökben, akkor a konvergencia nem lesz kvadratikus. Vegyük a következőt:

 

akkor   és képletben  . Tehát a konvergencia nem kvadratikus, habár a függvény végtelenszer differenciálható mindenütt.

Az iterációs pont állandó

szerkesztés

Tekintsük az alábbi függvényt

 

A függvénynek maximuma van x=0 ban és megoldása f(x) = 0 ban x = ±1. Ha az állandó pontból indítjuk az iterációt, akkor x0=0 (ahol a derivált nulla), x1 nem meghatározható.

 

A végeredmény hasonló lesz, ha a kezdőpont helyett bármely pont állandó. Még akkor is, ha a derivált nagyon kicsi, de nem nulla, a következő iteráció sokkal messzebb lesz a kívánt nullától.

Tegyük fel, hogy az f függvénynek van egy gyöke  -ban, f( ) = 0.

Ha f  folytonosan differenciálható, és ha a deriváltja nem tűnik el  -ban, akkor létezik egy olyan környezete az   körül, amelyből egy x0 kezdő pontot választva az {xn}sorozat konvergálni fog   -hoz.

Ha f  folytonosan differenciálható, ha a deriváltja nem tűnik el  -ban, és ha létezik a másodrendű deriváltja  -ban, akkor a konvergencia kvadratikus, vagy gyorsabb. Ha második deriváltja  -ban nem tűnik el, akkor a konvergencia csak kvadratikus.

Ha a derivált nem tűnik el   -ban, akkor a konvergencia általában lineáris. Különösen, ha f kétszer folytonosan differenciálható,   és  , akkor létezik egy olyan környezet az   körül, amelyből bármely x0 kezdeti értéket véve a sorozat lineárisan fog konvergálni, log10 2 arányossággal. Vagy, ha   ha   adottak,   egy U környezetéből, ha r   multiplicitása és ha  , akkor létezik egy olyan környezete  -nak , hogy bármely x0 kezdő értéket véve ebből a környezetből, akkor az iteráció lineárisan fog konvergálni.

Azonban még a lineáris konvergencia sem garantált kóros szituációkban.

Gyakorlatban ezek az eredmények lokálisak, és nem ismerjük előzetesen a konvergencia környezetét, de vannak némi eredmények globális konvergencia esetén is. Például, ha adott   megfelelő U+ környezete, ha f kétszeresen differenciálható U+ és ha  ,   U+-ban, akkor mindegyik x0 U+-ból a xk sorozat monoton csökken az   felé .

Általánosítás

szerkesztés

Nemlineáris egyenletrendszerek

szerkesztés

Ha valaki a Newton-módszert k nemlineáris egyenlet megoldására akarná használni, amely abból áll, hogy megtaláljuk az   folytonosan differenciálható függvény gyökeit. Ekkor a fenti képletben balról kell megszorozni k inverzét a JF Jacobi-mátrixszal (xn), f '(xn) -nel osztás helyett. Sok időt lehet megspórolni, ha megoldjuk a lineáris egyenletrendszert, a mátrix invertálása helyett:

 

az ismeretlen xn+1xn-re. Összefoglalva ez a módszer akkor működik, ha az x0 kezdeti értek elég közel van a keresett gyökhöz. Általában egy más módszerrel határozzák meg azt a régiót, amelyben a gyök található, majd a Newton-módszert használják a közelítés „csiszolására”.

Nemlineáris egyenletek a Banach-térben

szerkesztés

A Newton-módszer egy másik általánosítása az, hogy kapjunk meg a Banach-térben definiált F függvény egy gyökét. Ebben az esetben a képlet:

 ,

ahol   a Fréchet-derivált  -re alkalmazva. A módszer alkalmazásához szükséges, hogy a Fréchet-derivált invertálható legyen minden   pontban.

Komplex függvények

szerkesztés
 
Az x5 ‒ 1 = 0 függvény gyűjtőtere; a sötétebb részek azt jelentik, hogy ott több iteráció konvergál

Amikor komplex függvényekkel dolgozunk, a Newton-módszer közvetlenül alkalmazható a gyökök keresésére. Sok komplex függvény esetében egy fraktál határolja a kezdő értékeket, amelyek kiváltják a konvergálást a gyök felé.

További információk

szerkesztés