Óriás mágneses ellenállás

Ez a közzétett változat, ellenőrizve: 2024. január 7.

Az óriás mágneses ellenállást (Giant magnetoresistance, GMR) 1988-ban fedezték fel, amiért Albert Fert (1938–) francia fizikus és Peter Grünberg (1939–2018) német fizikus 2007-ben fizikai Nobel-díjat kapott.[1]

A felfedezés jelentős szerepet játszik a különböző mágneses érzékelők és egy új generációjú elektronika, a spintronika kifejlődésében.

Történet

szerkesztés

William Thomson (1824–1907) angol matematikus, mérnök 150 évvel ezelőtt figyelte meg, hogy bizonyos ferromágneses anyagok (vas, kobalt, nikkel stb.) ellenállása függ a külső mágneses tér irányától. Ezt a jelenséget ma anizotróp mágneses ellenállásnak nevezik (rövidítve AMR, az angol anisotropic magnetoresistance alapján).

A jelenség

szerkesztés
 
Spinszelep

A jelenség – miszerint a mágneses anyagokban az ellenállás függ az anyag mágnesezettségétől – fizikai magyarázata a spinben rejlik. A ferromágneses anyagban a felfelé és a lefelé álló spinű elektronállapotok eltérő száma, az ellenállás is jelentősen eltér a kétféle spinállapotú elektronra. Ha a spin iránya azonos a mágnesezettség irányával, akkor az ellenállás minimális, ha ellentétes irányú, akkor maximális.

A GMR-szerkezetben a mért ellenállás a két ferromágneses réteg mágnesezettségének az iránya közti különbségtől függ. Ha a réteg széléhez kapcsolt elektródán bejövő elektronok spinje polarizálatlan, akkor két eset állhat elő: ha a két ferromágneses rétegben a mágnesezettség irány azonos, akkor a bejövő elektronok fele (azok az elektronok, amelyeknek a spinje azonos irányú a ferromágnes mágnesezettségével) könnyedén, csaknem szóródás nélkül átjutnak a két rétegen. Ekkor az ellenállás minimális. Ellentétes mágnesezettségű ferromágneses rétegek esetén, függetlenül a spinbeállástól, az egyik rétegben az elektronok szóródása erősebb lesz, és így megnő az ellenállás. Ez a fizikai alapja a GMR-hatásnak.

Az ábrán egy GMR-szerkezet látható. Ez egy háromrétegű, úgynevezett spinszelep, aminek a mérete 30 nm nagyságrendű. Az FM = ferromágnes, NM = antiferromágnes, a nyilak oldalt mutatják a spin beállást, az FM rétegben a nyilak a mágnesezettség irányát jelzik.

Az ellenállás jóval nagyobb, ha a két FM réteg mágnesezettségének iránya ellentétes, mint akkor, amikor a két FM réteg mágnesezettségének iránya azonos. Előbbi esetben az áthaladó elektronok jobban szóródnak.

Az ekvivalens elektromos ellenállás az ábrán alul látható.

Alkalmazások

szerkesztés

Az IBM munkatársai több tízezer különböző anyagból és vastagságú rétegből készült szendvicsszerkezetet próbáltak ki. Így sikerült megtalálni azt a szerkezetet, amely a legnagyobb GMR-hatást mutatja mind szobahőmérsékleten, mind gyenge mágneses tér mellett.

2003 óta minden számítógép olvasófejében ilyen GMR-alapú spinszelep található. A fej rendkívül érzékeny a tér kis változására is. Az olvasófej működését animáció mutatja.[2] A diszk, amelyen az információ mágnesesen van tárolva, az olvasófej előtt elhaladva változtatja a spinszelep ellenállását, és így az információ a feszültség változásaként olvasható ki.

GMR-alapú szerkezeteket használnak különböző mágneses érzékelőknél (szilárdtest iránytű, aknakereső detektor, stb.)

Az óriás mágneses ellenállás felfedezése nem csak egy új technológiai alkalmazáshoz vezetett, hanem egy új technika, a spintronika alapjait is megteremtette. A hagyományos elektronikai eszközök működése az elektronok töltéseinek áramlásán alapul. Az elektron spinjének nincs szerepe a működésben. A spintronikában a működés az elektronok spinjeinek szabályozásán alapul, és ennek kapcsán olyan logikai eszközök születhetnek, amelyek gyorsabbak és kevesebb hőt termelnek, így hűtésük könnyebben megoldható.

  • Cserti József: Nobel-díj az ellenállásért, Természet Világa, 2008. április
  • Cserti József: Spintronika. Egy sokat ígérő szójáték, Természet Világa, 2005. szeptember

Külső hivatkozások

szerkesztés