Brocard-sejtés
matematikai probléma
n | Prímszámok | |||
---|---|---|---|---|
1 | 2 | 4 | 5, 7 | 2 |
2 | 3 | 9 | 11, 13, 17, 19, 23 | 5 |
3 | 5 | 25 | 29, 31, 37, 41, 43, 47 | 6 |
4 | 7 | 49 | 53, 59, 61, 67, 71… | 15 |
5 | 11 | 121 | 127, 131, 137, 139, 149… | 9 |
jelölje -et. |
A számelmélet területén a Brocard-sejtés azt mondja ki, hogy (pn)2 és (pn+1)2 között legalább 4 prímszám található, ha n > 1, és pn az n-edik prímszámot jelöli.[1] Henri Brocard francia matematikus mondta ki, széles körben igaznak vélik, de jelenleg (2016) nem bizonyított.
Az egymást követő prímszámok négyzetei közötti prímek számát a következő sorozat adja meg: 2, 5, 6, 15, 9, 22, 11, 27, ... A050216.
A Legendre-sejtésből, miszerint egymást követő egész számok négyzetei között legalább egy prímszám van, következik, hogy a pn ≥ 3 prímszámok négyzetei között legalább két prímszám található, hiszen pn+1 - pn ≥ 2.
Jegyzetek
szerkesztés- ↑ Weisstein, Eric W.: Brocard's Conjecture (angol nyelven). Wolfram MathWorld