A matematikában általában azt mondjuk, hogy egy csoport hat egy téren vagy halmazon, ha a ható csoport megfeleltethető a halmaz transzformációinak valamely részcsoportjával. A csoporthatások egy objektum szimmetriáinak a vizsgálatának igen hatékony segédeszközéül szolgálnak, ugyanakkor a struktúrák invariánsainak a megkeresésében is kapóra jöhetnek, mint például bizonyos topologikus terek fundamentális csoportjának a kiszámításakor.

Definíció

szerkesztés

G csoport (balról) hat X halmazon, ha G minden eleme egy

  bijekció.

G egységeleme X-en az identitás:

 

Teljesül az alábbi asszociativitás:

 

Pálya és stabilizátor

szerkesztés

Ha G hat X-en, akkor valamely X-beli x pont pályáján, avagy orbitján

 

halmazt értjük. Ha y rajta van x pályáján, azaz

 , akkor
 , tehát x is rajta van y pályáján.

Hasonlóan ellenőrizhető, hogy, ha y rajta van x, és z rajta van y pályáján, akkor z rajta van x pályáján. Figyelembe véve, hogy az egységelem mindent saját magába visz, ezek alapján kijelenthetjük, hogy X-et particionálják a G általi pályák.

Egy X-beli x pont stabilizátorának G azon elemeinek halmazát nevezzük, amelyek x-et fixen hagyják. Nyilvánvaló, hogy tetszőleges x pont   stabilizátora részcsoportja G-nek. Tekintsük   bal oldali mellékosztályait. Legyen  , ekkor

 
 

Így   bármely mellékosztályának tetszőleges két eleme x-et ugyanoda viszi. Most tegyük fel, hogy

  .

Ekkor legyen:

  . Így
 ,

tehát   benne van x stabilizátorában, és

 , azaz
 .

Így x stabilizátorának minden mellékosztálya x pályájának egy elemének az ősképe. Ebből következik, hogy   indexe x pályájának az elemszáma. Ezt beírva Lagrange tételébe, kapjuk a következő, pálya-stabilizátor tétel néven ismert azonosságot:

 .

Ha két pont stabilizátora konjugált, akkor azt mondjuk, hogy hasonló a pályájuk.

Burnside-lemma

szerkesztés

A pálya-stabilizátor tétel hasznos következménye a Burnside-lemma. Ha G csoport hat X halmazon, akkor a csoportbéli transzformációk fixpontjainak az összegét kiszámolhatjuk úgy is, hogy minden pontnál megszámoljuk, hogy hány transzformációnak a fixpontja. Jelölje P a G általi pályák halmazát:

 

Ezt rendezve kapjuk a Burnside-lemmát:

 ,

ami a bevezetésben foglaltak szerint azt jelenti, hogy egy csoporthatás transzformációi fixpontjainak az átlagos száma éppen a csoport általi pályák száma.