A matematikai analízis és kapcsolódó területei korlátosnak neveznek egy halmazt, ha annak kiterjedése valamilyen értelemben véges.

Általánosan, de pontosan (értelmesen) topologikus módszerekkel lehet megfogalmazni. Egy elég általános definíció a következő:

Egy H részhalmaz korlátos egy (M, d) metrikus térben, ha a halmazt tartalmazza egy véges sugarú gömb. Vagy másképpen fogalmazva, ha létezik és úgy, hogy minden -ra .

Ekkor a H halmaz átmérőjének a véges

értéket nevezzük. Ha H zárt, akkor ez az érték felvétetik, azaz van olyan H-beli x és y pont, aminek a távolsága pontosan ennyi (más szóval, a szuprémum ilyenkor maximum).

M egy korlátos metrikus tér (vagy d egy korlátos metrika), ha M korlátos részhalmaza saját magának.

Számegyenes

szerkesztés

A valós számok egy H részhalmaza felülről korlátos, ha van olyan K valós szám, hogy minden   esetén  .

A halmaz alulról korlátos, ha van olyan k, amelyre minden   esetén  .

Egy valós számhalmaz korlátos, ha mind alulról, mind pedig felülről korlátos. Ez ekvivalens azzal, hogy a halmaz egy véges intervallum részhalmaza.

A síkban korlátosnak nevezünk egy halmazt, ha lefedhető egy körlappal.

A térben korlátos egy halmaz, ha részhalmaza egy gömbnek.