Megoldóképlet
A megoldóképlet az n-edfokú
algebrai egyenlet megoldásait (gyökeit) szolgáltató algoritmus, mely véges sok lépésben véget érő és csak az algebrai műveleteket (a négy alapműveletet és a gyökvonást) használja.
Iteratív megoldások, melyek a gyököket tetszőleges pontossággal megközelítik nem tekintendők „megoldóképletnek”. A gyakorlatban sokszor kielégítő a közelítő megoldás. Ilyen közelítő megoldások régóta ismeretesek (például Al-Kásié (?-1429) vagy a Bernoulli–Lobacsevszkij–Graeffe-féle gyökhatványozó eljárás.
Először Carl Friedrich Gauss (1777-1855) bizonyította szabatosan az algebra alaptételét, mely szerint az n-edfokú egyenletnek pontosan n megoldása van. A megoldások nem feltétlenül mind valósak. Az n-edfokú egyenlet általában csak a komplex számkörben oldható meg.
Megoldóképletek
szerkesztésElsőfokú egyenlet
szerkesztésAz alakú elsőfokú egyenlet esetében
az megoldóképlet adja meg a megoldást.
Másodfokú egyenlet
szerkesztésAz alakú másodfokú egyenlet megoldóképlete:
- .
A másodfokú egyenlet diszkriminánsa:
A másodfokú egyenlet megoldóképletét először, a mai alakhoz hasonló egységes formában (a felesleges, együtthatókkal kapcsolatos esetszétválasztások nélkül) Michael Stifel (1487-1567) írta fel, bár a mainál sokkal esetlenebb jelölésekkel.
Harmadfokú egyenlet
szerkesztés
A harmadfokú esetre elméletben legalábbis a Girolamo Cardano (1501-1576) nevét viselő úgynevezett Cardano-képlet használható. A Cardano-képlet a következő:
A harmadfokú egyenlet valós megoldásait a megoldóképlettel csak úgy találhatjuk meg, ha a számítás során kilépünk a valós számkörből és, ha csak átmenetileg is, de belépünk a komplex számok világába. A harmadfokú egyenlet megoldásának ennélfogva igen nagy a tudománytörténeti jelentősége.
Negyedfokú egyenlet
szerkesztésA negyedfokú esetre a megoldóképlet Cardano tanítványától, Ludovico Ferraritól származik. Az ő módszere a teljes négyzetté alakítás volt. Egy évszázad múlva René Descartes Értekezés a módszerről című művében közölt zárt képletének alapja két másodfokú polinom szorzata volt, ahol a két elsőfokú tag egymás inverze volt (ti. így kiesik a harmadfokú tag).
A negyedfokú egyenlet megoldóképlete csak egy érdektelen részlet a matematikatörténetben a harmad- és az ötödfokú egyenlet megoldóképletéhez képest.
A valós együtthatós negyedfokú egyenlet megoldása Ludovico Ferrari szerint
szerkesztésAz negyedfokú egyenlet megoldását Ludovico Ferrari (1522–1565) két másodfokú egyenlet megoldására vezette vissza. Előbb azonban meg kell oldani egy harmadfokú egyenletet, melynek eredményét a másodfokú egyenletek együtthatóinak képzésekor fogjuk felhasználni.
A harmadfokú egyenlet: , ahol
.
Megoldása a Cardano-képlettel történik. z-t úgy kapjuk meg, hogy a harmadfokú egyenlet egyik valós y megoldásához b/6-ot hozzáadjuk: z = y + b/6. A másodfokú egyenletek:
Kettős műveleti jelnél az alsót akkor kell használni, ha .
Ötöd- vagy magasabb fokú egyenletek
szerkesztésNiels Henrik Abel (1802-1829) bebizonyította, hogy az ötödfokú esetben nem található megoldóképlet. Ez nem azt jelenti, hogy nincs megoldás, hanem, hogy nincs olyan véges lépés után véget érő számítási eljárás, amely csak a négy algebrai műveletet továbbá a gyökvonást használja és általános módszert szolgáltatna a gyökök megkeresésére (azaz minden egyenlet esetén ugyanazzal az eljárással előállíthatnánk a gyököket). Később Évariste Galois (1811-1832) megmutatta, hogy az ötnél magasabb fokú esetekben sem létezik megoldóképlet.
Források
szerkesztés- Sain Márton: „Matematikatörténeti ABC”, Tankönyvkiadó, 1978.
- „Nincs királyi út”, Gondolat, 1986.