Bayes-tétel

valószínűségszámítási állítás
Ez a közzétett változat, ellenőrizve: 2023. március 9.

A Bayes-tétel a valószínűségszámításban egy feltételes valószínűség és a fordítottja között állít fel kapcsolatot. A tétel Thomas Bayes brit matematikustól származik; nagy jelentősége van a valószínűségszámítás interpretációiban.

A tétel legegyszerűbb formájában azt állítja, hogy ha ismert az A és a B esemény valószínűsége, és ezek egyike sem 0, valamint a P(B|A) feltételes valószínűség, akkor

P(A)-t az A esemény a priori, P(A|B)-t az a posteriori valószínűségének is nevezik; a szokásos értelmezésben A valamiféle hipotézis, B egy megfigyelhető esemény, és a tétel azt adja meg, hogyan erősíti vagy gyengíti az esemény megfigyelése a hipotézis helyességébe vetett hitünket.

A tétel hasonló formában általánosítható sűrűségfüggvényekre és valószínűségi mértékekre is.

Ha egy teljes eseményrendszer, akkor

amit felhasználva adódik a Bayes-tétel teljes eseményrendszerekre alkalmazható alakja:

Bizonyítás

szerkesztés

A tétel közvetlenül levezethető a feltételes valószínűség definíciójából:

 

alapján

 

amiből P(B)-vel leosztva adódik a tétel.

Orvosi vizsgálatok

szerkesztés

Tegyük fel, hogy egy adott fertőzés meglétét vizsgáló teszt 99% eséllyel ismeri fel a kórokozót a beteg emberben, és 1%-kal az egészségesben (vagyis mind beteg, mind egészséges emberre 99% eséllyel helyes eredményt ad). Mennyire megbízható ez a teszt egy olyan betegség vizsgálatára, amely átlagosan ezerből egy embert betegít meg?

Mivel átlagosan minden ezredik ember betegedik meg, annak az a priori valószínűsége, hogy egy véletlenül választott személy beteg, P(B) = 0.001, annak pedig, hogy egészséges, P(E) = 0.999. Mivel a teszt 99% eséllyel helyes, a pozitív teszteredmény esélye beteg alanyt feltételezve P(+|B) = 0.99, egészséges alanyt feltételezve P(+|E) = 0.01. A Bayes-tétel teljes eseményrendszerekre vonatkozó alakját felírva (E és B egy teljes eseményrendszert alkot):

 

vagyis azt a meglepő eredményt kapjuk, hogy a teszt 99%-os hatékonysága ellenére az általa betegnek jelzett emberek valójában csak mintegy egy a tízhez eséllyel betegek. (Segíti a megértést, ha felismerjük, hogy a nevező annak a valószínűségét adja meg, hogy ezzel a vizsgálati pontossággal a populáció 0.99 * 0.001 + 0.01 * 0.999 részét betegnek "ítéljük", ami kb. 1%. Ez azért is lesz, mert pl. 1000 emberből a 999 nem beteg 1%-át a téves eredményű vizsgálat miatt betegnek fogjuk venni.)

Egy show-műsorban három ajtó közül kell választanunk, amelyek egyike mögött a nyeremény van. Miután választottunk, a műsorvezető kinyitja a másik két ajtó egyikét (de sosem azt, amelyik mögött a díj van). Melyik fennmaradó ajtót érdemes választanunk?

A feladatot azért nevezik paradoxonnak, mert a legtöbb ember úgy érzi, hogy bárhogy is választunk, 50% az esélyünk a sikerre (hiszen semmi mást nem tudunk, mint hogy a díj nem egy bizonyos ajtó mögött van). A Bayes-tétellel könnyen megmutatható, hogy ez nem igaz.

Tegyük fel, hogy az első ajtót választottuk, és a játékvezető a harmadikat nyitotta ki. Jelölje rendre   azt, hogy a díj az első, második illetve harmadik ajtó mögött van,   pedig azt, hogy a játékvezető a harmadik ajtót nyitja ki. Amíg nem tudjuk, melyik ajtót nyitja ki, a díj helyére vonatkozó a priori valószínűségek  . A játékvezető sosem nyitja ki azt az ajtót, ami mögött a díj van ( ), és ha két lehetősége is van, véletlenszerűen választ ( ). Mivel nem tudjuk, hol a díj, egyformán valószínű számunkra, hogy a játékvezető a második vagy a harmadik ajtót nyitja ki ( ). Bayes képletét alkalmazva

 
 
 

vagyis kétszer akkora esélyünk van, ha átváltunk a másik csukott ajtóra.

  • Denkinger Géza: Valószínűségszámítás
  • Hans-Peter Beck-Bernholdt, Hans-Hermann Dubben: A tojást rakó kutya